본문 바로가기 대메뉴 바로가기
open
Close

High Speed Intergrated Circuit Lab.

Members

Professor

송종인
송종인 Song, Jong-in
  • LAB NAMEHigh Speed Intergrated Circuit Lab.
  • E-MAILjisong@gist.ac.kr
  • TEL062-715-2208
  • FAX062-715-2204
  • OFFICE315

EDUCATION

  • Ph.D in Electrical Engineering,1990.Columbia University, New York
  • M.S. in Electrical Engineering,1982.KAIST, Daegu, Korea
  • B.S. in Electronics Engineering,1980.Seoul National University, Seoul, Korea

WORK EXPERIENCE

  • Professor, School of Electrical Engineering and Computer Science, GIST (1994-Present)
  • Postdoctoral MTS, Bell Communications Research (1990-1994)
  • Graduate research assistant, NSF Center for Telecommunications Research(CTR) (1986-1990)
  • Senior MTS, Electronics and Telecommunications Research Institute (1982-1986)

INTRODUCE

  • High-Speed Integrated Circuit LaboratoryPrimary research objectives of this laboratory include design, fabrication, characterization of high-speed devices, integrated circuits, and subsystems for high-speed optical and wireless communication system applications. The laboratory has design tools including a Silvaco device simulator, microwave circuit design simulators including HP Microwave Design Software (MDS/ADS) and HSPICE, and HP ICCAP for device parameter extraction and modeling. The laboratory also has a clean room that is equipped with various compound semiconductor device and circuit fabrication equipments and facilities. The laboratory currently has characterization equipments including a semiconductor parameter analyzer, a spectrum anayzers (50 GHz), a vector network analyzer (50 GHz), a load-pull power measurement system (50 GHz), a high-frequency noise measurement system (40 GHz), a low-frequency noise measurement system (1 Hz 1 MHz), a microwave probe station, a communication signal analyzer (optical: 40 Gbps, electrical: 50 GHz), a subpicosecond optical sampling system, a low-noise amplifier, and a low temperature probe station. These measurement systems primary cover a frequency range up to 50 GHz and will be upgraded to cover higher frequency ranges.On-going research projects in the laboratory are the development of millimeter-wave device including InPand GaAs-based HEMT, HBT, compound seniconductor MOSFETs, high-speed photodetectors, quantum well/dot far-infrared photodetectors and the development of MMICs, modules for wireless communications, modules for millimeterwave-over-fiber (MMoF) sysetm. Detailed research topics include epitaxial growth using CBEand MBE, device fabrication, device modelling and parameter extraction, microwave device (noise and power) characterization, high-speed optical device characterization, MMIC design, MMIC fabrication, reliability of devices and MMICs.
  • Semiconductor Processing Laboratory (Clean Room)
  • There is a clean room (4,320 square-feet with the class of 1,000 to 10,000) that is equipped with facilities for fabrication of compound semiconductor devices and circuits for high-speed communication applications. The fabrication equipments currently installed are a V80H chemical beam epitaxy system (CBE), a V80H-10K Molecular Beam Epitaxy(MBE), a J5800LV scanning electron microscope (SEM), a Raith Elphy Plus SEM-based e-beam lithography system, a Karl Suss Jirset Photoresist spin coater, a Karl Suss MJB3 mask aligner with a backside alignment capability, Leicaoptical microscopes, an Oxford Plus80 reactive ion etching (RIE) system, an Oxford Plus80 plasma enhance chemical vapor deposition (PECVD) system, a Temescal BJD-1800 e-beam evaporator system, an Alpha-step profiler, and and an electro-chemical CV profiler (Polaron), chemical wet stations. The equipments are capable of fabricating ultra-high-speed devices including high-electron mobility transistors (HEMTs), heterojunction bipolar transistors (HBTs), high-speed detectors, and modulators operating up to a few hundred GHz and integrated circuits operating up to tens of GHz.
QUICK
MENU
GIST 대표GIST 대표 GIST PortalGIST Portal 전기전자컴퓨터공학부전기전자컴퓨터공학부 도서관도서관 증명서 발급증명서 발급